We report on a Surface-Plasmon-Resonance (SPR) technique based on Fourier
-Transform - Infra - Red (FTIR) spectrometer. In contrast to the conventional
surface plasmon technique, operating at a fixed wavelength and a variable angle
of incidence, our setup allows the wavelength and the angle of incidence to be
varied simultaneously. We explored the potential of the SPR technique in the
infrared for biological studies involving aqueous solutions. Using computer
simulations, we found the optimal combination of parameters (incident angle,
wavelength) for performing this task. Our experiments with physiologically
important glucose concentrations in water and in human plasma verified our
computer simulations. Importantly, we demonstrated that the sensitivity of the
SPR technique in the infrared range is not lower and in fact is even higher
than that for visible light. We emphasize the advantages of infra red SPR for
studying glucose and other biological molecules in living cells.Comment: 8 pages,8 figure