Most of the observed emission lines and continuum excess from young accreting
low mass stars (Classical T Tauri stars -- CTTSs) take place in the star-disk
or inner disk region. These regions have a complex emission topology still
largely unknown. In this paper the magnetospheric accretion and inner wind
contributions to the observed permitted He and H near infrared (NIR) lines of
the bright southern CTTS RU Lupi are investigated for the first time. Previous
optical observations of RU Lupi showed a large H-alpha profile, due to the
emission from a wind in the line wings, and a micro-jet detected in forbidden
lines. We extend this analysis to NIR lines through seeing-limited high
spectral resolution spectra taken with VLT/ISAAC, and adaptive optics (AO)
aided narrow-band imaging and low spectral resolution spectroscopy with
VLT/NACO. Using spectro-astrometric analysis we investigate the presence of
extended emission down to very low spatial scales (a few AU). The HeI 10830
line presents a P Cygni profile whose absorption feature indicates the presence
of an inner stellar wind. Moreover the spectro-astrometric analysis evidences
the presence of an extended emission superimposed to the absorption feature and
likely coming from the micro-jet detected in the optical. On the contrary, the
origin of the Hydrogen Paschen and Brackett lines is difficult to address. We
tried tentatively to explain the observed line profiles and flux ratios with
both accretion and wind models showing the limits of both approaches. The lack
of spectro-astrometric signal indicates that the HI emission is either compact
or symmetric. Our analysis confirms the sensitivity of the HeI line to the
presence of faint extended emission regions in the close proximity of the star.Comment: 11 pages, 4 figures, accepted for publication on A&