Using low energy electron microscopy we observe that Pd deposited on Ru only
attaches to small sections of the atomic step edges surrounding Pd islands.
This causes a novel epitaxial growth mode in which islands advance in a
snakelike motion, giving rise to labyrinthine patterns. Based on density
functional theory together with scanning tunneling microscopy and low energy
electron microscopy we propose that this growth mode is caused by a surface
alloy forming around growing islands. This alloy gradually reduces step
attachment rates, resulting in an instability that favors adatom attachment at
fast advancing step sections