research

Dispersive and Strichartz estimates for hyperbolic equations with constant coefficients

Abstract

Dispersive and Strichartz estimates for solutions to general strictly hyperbolic partial differential equations with constant coefficients are considered. The global time decay estimates of LpLqL^p-L^q norms of propagators are obtained, and it is shown how the time decay rates depend on the geometry of the problem. The frequency space is separated in several zones each giving a certain decay rate. Geometric conditions on characteristics responsible for the particular decay are identified and investigated. Thus, a comprehensive analysis is carried out for strictly hyperbolic equations of high orders with lower order terms of a general form. Results are applied to establish time decay estimates for the Fokker-Planck equation and for semilinear hyperbolic equations.Comment: 119 page

    Similar works

    Full text

    thumbnail-image