Computational Study of Oxidation Potential Fluctuation of Ketone Molecule

Abstract

This study focus on investigating the oxidation potential fluctuation of organic molecule in the solution. The organic molecule that was investigated is 3-pentanone molecule that has oxi-dation potential 0.143 V experimentally. The oxidation potential was calculated using Born-Haber cycle approximation involving the calculation of gas phase Gibbs free energy and solvation energy of reduced and the oxidized state. The reduced state represents a neutral charge molecule and the oxidized state represents a radical cation molecule. The first, molecular dynamics (MD) simulation of both state was performed for 2 ns time. Then, 400 snapshot structures of both state molecule was captured. Gas phase Gibbs free energy and solvation energy were calculated using MP2 theory with cc-pvdz basis set and the solvation effect was approached using Polarizable Continuum Model (PCM). Normal Hydrogen Electrode (NHE), that has redox potential 4.44 V experimentally, was used as reference electrode. The result shows the different of gas phase Gibbs free energy average of both state was 756.97 ± 21.598 kJ/mol, and solvation energy average of reduced and oxidized state were -18.42 kJ/mol ± 1.482 kJ/mol, and -219.02 ± 1.094 kJ/mol respectively. Then, the oxidation potential was calculated by substituting gas phase Gibbs free energy and solvation energy into Born-Haber cycle approximation. The calculation result shows the average of oxidation po-tential value is 1.396 ± 0.225 V. The deviation of oxidation potential confirms the fluctuation of oxidation potential during the simulation

    Similar works