Differential effects of neurodegeneration biomarkers on subclinical cognitive decline

Abstract

Introduction: Neurodegeneration appears to be the biological mechanism most proximate to cognitive decline in Alzheimer's disease. We test whether t-tau and alternative biomarkers of neurodegeneration—neurogranin and neurofilament light protein (NFL)—add value in predicting subclinical cognitive decline. Methods: One hundred fifty cognitively unimpaired participants received a lumbar puncture for cerebrospinal fluid and at least two neuropsychological examinations (mean age at first visit = 59.3 ± 6.3 years; 67% female). Linear mixed effects models were used with cognitive composite scores as outcomes. Neurodegeneration interactions terms were the primary predictors of interest: age × NFL or age × neurogranin or age × t-tau. Models were compared using likelihood ratio tests. Results: Age × NFL accounted for a significant amount of variation in longitudinal change on preclinical Alzheimer's cognitive composite scores, memory composite scores, and learning scores, whereas age × neurogranin and age × t-tau did not. Discussion: These data suggest that NFL may be more sensitive to subclinical cognitive decline compared to other proposed biomarkers for neurodegeneration

    Similar works