Abstract

Plants associate with an infinite number of microorganisms that interact with their hosts in a mutualistic or parasitic manner. Evidence is accumulating that strigolactones (SLs) play a role in shaping these associations. The best described function of SLs in plant–microbe interactions is in the rhizosphere, where, after being exuded from the root, they activate hyphal branching and enhanced growth and energy metabolism of symbiotic arbuscular mycorrhiza fungi (AMF). Furthermore, an impact of SLs on the quantitative development of root nodule symbiosis with symbiotic nitrogen-fixing bacteria and on the success of fungal and bacterial leaf pathogens is beginning to be revealed. Thus far, the role of SLs has predominantly been studied in binary plant–microbe interactions. It can be predicted that their impact on the bacterial, fungal, and oomycetal communities (microbiomes), which thrive on roots, in the rhizosphere, and on aerial tissues, will be addressed in the near future

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021