research

Runtime Mechanisms to Survive New HPC Architectures: A Use-Case in Human Respiratory Simulations

Abstract

Computational Fluid and Particle Dynamics (CFPD) simulations are of paramount importance for studying and improving drug effectiveness. Computational requirements of CFPD codes demand high-performance computing (HPC) resources. For these reasons we introduce and evaluate in this paper system software techniques for improving performance and tolerate load imbalance on a state-of-the-art production CFPD code. We demonstrate benefits of these techniques on Intel-, IBM-, and Arm-based HPC technologies ranked in the Top500 supercomputers, showing the importance of using mechanisms applied at runtime to improve the performance independently of the underlying architecture. We run a real CFPD simulation of particle tracking on the human respiratory system, showing performance improvements of up to 2x, across different architectures, while applying runtime techniques and keeping constant the computational resources.This work is partially supported by the Spanish Government (SEV-2015-0493), by the Spanish Ministry of Science and Technology project (TIN2015-65316-P), by the Generalitat de Catalunya (2017-SGR-1414), and by the European Mont-Blanc projects (288777, 610402 and 671697).Peer ReviewedPreprin

    Similar works