research

The modular variety of hyperelliptic curves of genus three

Abstract

The modular variety of non singular and complete hyperelliptic curves with level-two structure of genus 3 is a 5-dimensional quasi projective variety which admits several standard compactifications. The first one, X, comes from the realization of this variety as a sub-variety of the Siegel modular variety of level two and genus three .We will be to describe the equations of X in a suitable projective embedding and its Hilbert function. It will turn out that X is normal. A further model comes from geometric invariant theory using so-called semistable degenerated point configurations in (P^1)^8 . We denote this GIT-compactification by Y. The equations of this variety in a suitable projective embedding are known. This variety also can by identified with a Baily-Borel compactified ball-quotient. We will describe these results in some detail and obtain new proofs including some finer results for them. We have a birational map between Y and X . In this paper we use the fact that there are graded algebras (closely related to algebras of modular forms) A,B such that X=proj(A) and Y=proj(B). This homomorphism rests on the theory of Thomae (19th century), in which the thetanullwerte of hyperelliptic curves have been computed. Using the explicit equations for A,BA,B we can compute the base locus of the map from Y to X. Blowing up the base locus and the singularity of Y, we get a dominant, smooth model {\tilde Y}. We will see that {\tilde Y} is isomorphic to the compactification of families of marked projective lines (P^1,x_1,...,x_8), usually denoted by {\bar M_{0,8}}. There are several combinatorial similarities between the models X and Y. These similarities can be described best, if one uses the ball-model to describe Y.Comment: 39 page

    Similar works

    Full text

    thumbnail-image

    Available Versions