The modular variety of non singular and complete hyperelliptic curves with
level-two structure of genus 3 is a 5-dimensional quasi projective variety
which admits several standard compactifications. The first one, X, comes from
the realization of this variety as a sub-variety of the Siegel modular variety
of level two and genus three .We will be to describe the equations of X in a
suitable projective embedding and its Hilbert function. It will turn out that
X is normal. A further model comes from geometric invariant theory using
so-called semistable degenerated point configurations in (P^1)^8 . We denote
this GIT-compactification by Y. The equations of this variety in a suitable
projective embedding are known. This variety also can by identified with a
Baily-Borel compactified ball-quotient. We will describe these results in some
detail and obtain new proofs including some finer results for them. We have a
birational map between Y and X . In this paper we use the fact that there are
graded algebras (closely related to algebras of modular forms) A,B such that
X=proj(A) and Y=proj(B). This homomorphism rests on the theory of Thomae (19th
century), in which the thetanullwerte of hyperelliptic curves have been
computed. Using the explicit equations for A,B we can compute the base locus
of the map from Y to X.
Blowing up the base locus and the singularity of Y, we get a dominant, smooth
model {\tilde Y}. We will see that {\tilde Y} is isomorphic to the
compactification of families of marked projective lines (P^1,x_1,...,x_8),
usually denoted by {\bar M_{0,8}}. There are several combinatorial similarities
between the models X and Y. These similarities can be described best, if one
uses the ball-model to describe Y.Comment: 39 page