research

Mild Solutions for a Class of Fractional SPDEs and Their Sample Paths

Abstract

In this article we introduce and analyze a notion of mild solution for a class of non-autonomous parabolic stochastic partial differential equations defined on a bounded open subset DRdD\subset\mathbb{R}^{d} and driven by an infinite-dimensional fractional noise. The noise is derived from an L2(D)L^{2}(D)-valued fractional Wiener process WHW^{H} whose covariance operator satisfies appropriate restrictions; moreover, the Hurst parameter HH is subjected to constraints formulated in terms of dd and the H\"{o}lder exponent of the derivative hh^\prime of the noise nonlinearity in the equations. We prove the existence of such solution, establish its relation with the variational solution introduced in \cite{nuavu} and also prove the H\"{o}lder continuity of its sample paths when we consider it as an L2(D)L^{2}(D)--valued stochastic processes. When hh is an affine function, we also prove uniqueness. The proofs are based on a relation between the notions of mild and variational solution established in Sanz-Sol\'e and Vuillermot 2003, and adapted to our problem, and on a fine analysis of the singularities of Green's function associated with the class of parabolic problems we investigate. An immediate consequence of our results is the indistinguishability of mild and variational solutions in the case of uniqueness.Comment: 37 page

    Similar works

    Full text

    thumbnail-image

    Available Versions