A Density-Based Approach to the Propagation of Re-Entry Uncertainties

Abstract

The proposed study aims at implementing a density-based approach for the propagation of uncertainties in the initial conditions and parameters for the analysis and prediction of spacecraft re-entries. Using the continuity equation together with the re-entry dynamics, the joint probability distribution function of the uncertainties is propagated and the final uncertainties in the re-entry corridor, impact location, and casualty area are quantified. The paper considers uncertainties in the initial conditions at re-entry and in the ballistic coefficient of the satellite for different types of re-entry scenarios, studying the effects that such uncertainties have on the impact location and entry corridor

    Similar works