thesis

Molecular Dynamics Simulation of the Transport Properties of Molten Transuranic Chloride Salts

Abstract

The Accelerator Research Laboratory at Texas A&M is proposing a design for accelerator-driven subcritical fission in molten salt (ADSMS), a system that destroys the transuranic elements in used nuclear fuel. The transuranics (TRU) are the most enduring hazard of nuclear power. TRU contain high radiotoxicity and have half-lives of a thousand to a million years. The ADSMS core is fueled by a homogeneous chloride-based molten salt mixture containing TRUCl3 and NaCl. Certain thermodynamic properties are critical to modeling both the neutronics and heat transfer of an ADSMS system. There is a lack of experimental data on the density, heat capacity, electrical and thermal conductivities, and viscosity of TRUCl3 salt systems. Molecular dynamics simulations using a polarizable ion model (PIM) are employed to determine the density and heat capacity of these melts as a function of temperature. Green-Kubo methods are implemented to calculate the electrical conductivity, thermal conductivity, and viscosity of the salt using the outputs of the simulations. Results for pure molten salt systems are compared to experimental data when possible to validate the potentials used. Here I discuss chloride salt systems of interest, their calculated properties, and possible sources of error for our simulations

    Similar works