Crustal structure and velocity model of the Moroccan Atlas from refraction/wide angle data. Implications for its tectonic evolution

Abstract

The Atlas Mountain Range is an intra-continental Cenozoic orogenic belt located at the southern edge of the diffuse plate boundary zone separating Africa and Europe. Its western part, the Moroccan Atlas, has long been under the scope of scientist regarding the origin of its high topographies, locally exceeding 4000 m. Geological studies indicate that this mountain belt has experienced low to moderate shortening. Furthermore, the later decreases as topography increases towards the west. These observations rise the question about the origin of the Atlas Mountains topography. Potential field studies indicate that an astenospheric upwelling supports the Atlas high elevations. However, these models depend strongly on the Moho topography and depth. Refraction/wide angle experiments carried out in the 80¿s suggested that the crust is thin and the Moho relatively flat. However, the proposed crustal structure and velocity inversions are not in agreement with the present models of this mountain belt. With the goal of improving the knowledge of the Moho boundary geometry and the velocity structure of the crust, a refraction/wide angle experiment was carried out in spring 2010 by an international team: the SIMA (Seismic Imaging of the Moroccan Atlas) experiment. A ~700 km long profile, going from Tanger to the Sahara Desert, south of Merzouga, recorded, every 400-1000 m, the energy of 6, 1 tn shots. Even with a low signal/noise ratio, the data allows the identification of crustal phases (Ps, Pg and PiP) and Moho reflected/refracted phases (PmP and Pn). Very weak subcrustal energy appers in some shot gathers. Forward modeling pictures a 3 layers crust and shows the Moho as an asymmetric feature that locally defines a crustal root, suggesting that the crust is imbricated. The crust-mantle boundary is modeled at relatively shallow depths that are in accordance with the results of other geophysical data, thus supporting the idea of a `mantle plume¿ as main contributor to the Atlas mountains topography. P wave velocities are low in the crust and upper mantle. First arrivals/ reflections tomography supports the forward modelling results. Further investigations are needed to unravel the source of the low velocities and to constrain the existence of mantle reflectors.Peer Reviewe

    Similar works