Electro-mechanical system control based on observers

Abstract

International audienceThe prediction of the gear behavior is becoming major concerns in many industries. For this reason, in this article, an electro-mechanical modeling is developed in order to simulate a gear element driven by an asynchronous motor. The electrical part, which is the induction motor, is simulated by using the Kron's model while the mechanical part, which is the single stage gear element, is accounted for by a torsional model. The mechanical model that simulates the pinion-gear pair is obtained by reducing the degree of freedom of the global spur or helical gear system. The electrical and mechanical state variables are combined in order to obtain a unique differential system that describes the dynamics of the elecro-mechanical system. The global coupled electro-mechanical model can be characterized by a unique set of non-linear state equations. The contribution of this work is to apply the control based on observers in order to supervise the electrical and mechanical behavior of the electro-mechanical system from only its inputs and its measurements outputs (sensors outputs). Some simulations on pinon/motor angular speed, electromagnetic torque, currents, are presented, which illustrate the system evolution (i.e., the electrical and mechanical quantities) and the good performances of the proposed observers

    Similar works