Numerical Simulation of Oscillating Multiphase Heat Transfer in Parallel plates using Pseudopotential Multiple-Relaxation-Time Lattice Boltzmann Method

Abstract

Multiphase flows frequently occur in many important engineering and scientific applications, but modeling of such flows is a rather challenging task due to complex interfacial dynamics between different phases, let alone if the flow is oscillating in the porous media. Using humid air as the working fluid in the thermoacoustic refrigerator is one of the research focus to improve the thermoacoustic performance, but the corresponding effect is the condensation of humid air in the thermal stack. Due to the small sized spacing of thermal stack and the need to explore the detailed condensation process in oscillating flow, a mesoscale numerical approach need to be developed. Over the decades, several types of Lattice Boltzmann (LB) models for multiphase flows have been developed under different physical pictures, for example the color-gradient model, the Shan-Chen model, the nonideal pressure tensor model and the HSD model. In the current study, a pseudopotential Multiple-Relaxation-Time (MRT) LBM simulation was utilized to simulate the incompressible oscillating flow and condensation in parallel plates. In the initial stage of condensation, the oscillating flow benefits to accumulate the saturated vapor at the exit regions, and the velocity vector of saturated vapor clearly showed the flow over the droplets. It was also concluded that if the condensate can be removed out from the parallel plates, the oscillating flow and condensation will continuously feed the cold surface to form more water droplets. The effect of wettability to the condensation was discussed, and it turned out that by increasing the wettability, the saturated water vapor was easier to condense on the cold walls, and the distance between each pair of droplets was also strongly affected by the wettability

    Similar works