We discuss the star formation history of the Galaxy, based on the
observations of extremely metal-poor stars (EMP) in the Galactic halo, to gain
an insight into the evolution and structure formation in the early universe.
The initialmass function (IMF) of EMP stars is derived from the observed
fraction of carbon-enhanced EXP (CEMP) stars among the EMP survivors, which are
thought to originate from the evolution in the close binary systems with mass
transfer. Relying upon the theory of the evolution of EMP stars and of their
binary evolution, we find that stars of metallicity [Fe/H]<-2.5 were formed at
typical mass of ~10M_sun. The top heavy IMF thus obtained is applied to study
the early chemical evolution of the Galaxy. We construct the merging history of
our Galaxy semi-analytically and derive the metallicity distribution function
(MDF) of low-mass EMP stars that survive to date with taking into account the
contribution of binary systems. It is shown that the resultant MDF can well
reproduce the observed distribution of EMP survivors, and, in particular, that
they almost all stem from a less-mass companion in binary systems. We also
investigate how first stars affect the MDF of EMP stars.Comment: 5 pages, 4 figures, conference proceedings of First Star II