research

Adaptive Shape Control for Aerodynamic Design

Abstract

We present an approach to aerodynamic optimization in which the shape control is adaptively parameterized. Starting from a coarse set of design variables, a sequence of higher-dimensional nested search spaces is automatically generated. Refinement can be either uniform or adaptive, in which case only the most important shape control is added. The relative importance of candidate design variables is determined by comparing objective and constraint gradients, computed at low cost via adjoint solutions. A search procedure for finding an effective ensemble of shape parameters is also given. We first demonstrate this system on a multipoint drag miminization problem in 2D with many constraints, showing that an adaptive parameterization approach consistently achieves smoother, more robust, and faster design improvement than fixed parameterizations. We also establish a 3D shape- matching benchmark, where we demonstrate that our approach automatically discovers the necessary parameters to match a target shape. By largely automating shape parameterization, this work also aims to remove a time-consuming aspect of shape optimization

    Similar works