Bio-inspired Neuromorphic Computing Using Memristor Crossbar Networks

Abstract

Bio-inspired neuromorphic computing systems built with emerging devices such as memristors have become an active research field. Experimental demonstrations at the network-level have suggested memristor-based neuromorphic systems as a promising candidate to overcome the von-Neumann bottleneck in future computing applications. As a hardware system that offers co-location of memory and data processing, memristor-based networks represent an efficient computing platform with minimal data transfer and high parallelism. Furthermore, active utilization of the dynamic processes during resistive switching in memristors can help realize more faithful emulation of biological device and network behaviors, with the potential to process dynamic temporal inputs efficiently. In this thesis, I present experimental demonstrations of neuromorphic systems using fabricated memristor arrays as well as network-level simulation results. Models of resistive switching behavior in two types of memristor devices, conventional first-order and recently proposed second-order memristor devices, will be first introduced. Secondly, experimental demonstration of K-means clustering through unsupervised learning in a memristor network will be presented. The memristor based hardware systems achieved high classification accuracy (93.3%) on the standard IRIS data set, suggesting practical networks can be built with optimized memristor devices. Thirdly, implementation of a partial differential equation (PDE) solver in memristor arrays will be discussed. This work expands the capability of memristor-based computing hardware from ‘soft’ to ‘hard’ computing tasks, which require very high precision and accurate solutions. In general first-order memristors are suitable to perform tasks that are based on vector-matrix multiplications, ranging from K-means clustering to PDE solvers. On the other hand, utilizing internal device dynamics in second-order memristors can allow natural emulation of biological behaviors and enable network functions such as temporal data processing. An effort to explore second-order memristor devices and their network behaviors will be discussed. Finally, we propose ideas to build large-size passive memristor crossbar arrays, including fabrication approaches, guidelines of device structure, and analysis of the parasitic effects in larger arrays.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147610/1/yjjeong_1.pd

    Similar works

    Full text

    thumbnail-image