The influence of meridional ice transport on Europa’s ocean stratification and heat content

Abstract

Jupiter’s moon Europa likely hosts a saltwater ocean beneath its icy surface. Geothermal heating and rotating convection in the ocean may drive a global overturning circulation that redistributes heat vertically and meridionally, preferentially warming the ice shell at the equator. Here we assess the previously unconstrained influence of ocean‐ice coupling on Europa’s ocean stratification and heat transport. We demonstrate that a relatively fresh layer can form at the ice‐ocean interface due to a meridional ice transport forced by the differential ice shell heating between the equator and the poles. We provide analytical and numerical solutions for the layer’s characteristics, highlighting their sensitivity to critical ocean parameters. For a weakly turbulent and highly saline ocean, a strong buoyancy gradient at the base of the freshwater layer can suppress vertical tracer exchange with the deeper ocean. As a result, the freshwater layer permits relatively warm deep ocean temperatures.Key PointsCoupling of Europa’s ocean circulation and the ice shell impacts global stratificationA low‐latitude freshwater layer may suppress vertical heat and tracer transportParameter space is explored based on properties observed by future missionsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137725/1/grl56051.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137725/2/grl56051-sup-0001-TextS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137725/3/grl56051_am.pd

    Similar works