Trees, linear orders and G\^ateaux smooth norms


We introduce a linearly ordered set Z and use it to prove a necessity condition for the existence of a G\^ateaux smooth norm on C(T), where T is a tree. This criterion is directly analogous to the corresponding equivalent condition for Fr\'echet smooth norms. In addition, we prove that if C(T) admits a G\^ateaux smooth lattice norm then it also admits a lattice norm with strictly convex dual norm.Comment: A different version of this paper is to appear in J. London Math. So

    Similar works

    Full text


    Available Versions