Uncertainty, Risk, and Information Value in Software Requirements and Architecture

Abstract

Uncertainty complicates early requirements and architecture decisions and may expose a software project to significant risk. Yet software architects lack support for evaluating uncertainty, its impact on risk, and the value of reducing uncertainty before making critical decisions. We propose to apply decision analysis and multi-objective optimisation techniques to provide such support. We present a systematic method allowing software architects to describe uncertainty about the impact of alternatives on stakeholders' goals; to calculate the consequences of uncertainty through Monte-Carlo simulation; to shortlist candidate architectures based on expected costs, benefits and risks; and to assess the value of obtaining additional information before deciding. We demonstrate our method on the design of a system for coordinating emergency response teams. Our approach highlights the need for requirements engineering and software cost estimation methods to disclose uncertainty instead of hiding it

    Similar works