research

Star Formation History in the Galactic Thin Disk

Abstract

The behavior of the relative magnesium abundances in the thin-disk stars versus their orbital radii suggests that the star formation rate in the thin disk decreases with increasing Galactocentric distance, and there was no star formation for some time outside the solar circle while this process was continuous within the solar circle. The decrease in the star formation rate with increasing Galactocentric distance is responsible for the existence of a negative radial metallicity gradient in the thin disk. At the same time the relative magnesium abundance exhibits no radial gradient. It is in detail considered the influence of selective effects on the form of both age - metallicity and age - relative magnesium abundance diagrams. It is shown that the first several billion years of the formation of the thin disk interstellar medium in it was on the average sufficiently rich in heavy elements ( = -0.22), badly mixed (\sigma_[Fe/H] = 0.21), and the average relative magnesium abundance was comparatively high ( = 0.10). Approximately 5 billion years ago average metallicity began to systematically increase, and its dispersion and the average relative magnesium abundance - to decrease. These properties may be explained by an increase in star formation rate with the simultaneous intensification of the processes of mixing the interstellar medium in the thin disk, provoke possible by interaction the Galaxy with the completely massive by satellite galaxy

    Similar works