We derive a family of singular iterated maps--closely related to Poincare
maps--that describe chaotic interactions between colliding solitary waves. The
chaotic behavior of such solitary wave collisions depends on the transfer of
energy to a secondary mode of oscillation, often an internal mode of the pulse.
Unlike previous analyses, this map allows one to understand the interactions in
the case when this mode is excited prior to the first collision. The map is
derived using Melnikov integrals and matched asymptotic expansions and
generalizes a ``multi-pulse'' Melnikov integral and allows one to find not only
multipulse heteroclinic orbits, but exotic periodic orbits. The family of maps
derived exhibits singular behavior, including regions of infinite winding. This
problem is shown to be a singular version of the conservative Ikeda map from
laser physics and connections are made with problems from celestial mechanics
and fluid mechanics.Comment: 29 pages, 17 figures, submitted to Chaos, higher-resolution figures
available at author's website: http://m.njit.edu/goodman/publication