The evolution of complex molecular traits such as disulphide bridges often
requires multiple mutations. The intermediate steps in such evolutionary
trajectories are likely to be selectively neutral or deleterious. Therefore,
large populations and long times may be required to evolve such traits. We
propose that errors in transcription and translation may allow selection for
the intermediate mutations if the final trait provides a large enough selective
advantage. We test this hypothesis using a population based model of protein
evolution. If an individual acquires one of two mutations needed for a novel
trait, the second mutation can be introduced into the phenotype due to
transcription and translation errors. If the novel trait is advantageous
enough, the allele with only one mutation will spread through the population,
even though the gene sequence does not yet code for the complete trait. The
first mutation then has a higher frequency than expected without phenotypic
mutations giving the second mutation a higher probability of fixation. Thus,
errors allow protein sequences to ''look-ahead'' for a more direct path to a
complex trait.Comment: Submitted to "Genetics