research

A dynamic look-ahead Monte Carlo algorithm for pricing Bermudan options

Abstract

Under the assumption of no-arbitrage, the pricing of American and Bermudan options can be casted into optimal stopping problems. We propose a new adaptive simulation based algorithm for the numerical solution of optimal stopping problems in discrete time. Our approach is to recursively compute the so-called continuation values. They are defined as regression functions of the cash flow, which would occur over a series of subsequent time periods, if the approximated optimal exercise strategy is applied. We use nonparametric least squares regression estimates to approximate the continuation values from a set of sample paths which we simulate from the underlying stochastic process. The parameters of the regression estimates and the regression problems are chosen in a data-dependent manner. We present results concerning the consistency and rate of convergence of the new algorithm. Finally, we illustrate its performance by pricing high-dimensional Bermudan basket options with strangle-spread payoff based on the average of the underlying assets.Comment: Published in at http://dx.doi.org/10.1214/105051607000000249 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019