The detector material Cadmium Zinc Telluride (CZT), known for its high
resolution over a broad energy range, is produced mainly by two methods: the
Modified High-Pressure Bridgman (MHB) and the High-Pressure Bridgman (HPB)
process. This study is based on MHB CZT substrates from the company Orbotech
Medical Solutions Ltd. with a detector size of 2.0x2.0x0.5 cm^3, 8x8 pixels and
a pitch of 2.46 mm. Former studies have emphasized only on the cathode material
showing that high-work-function improve the energy resolution at lower
energies. Therfore, we studied the influence of the anode material while
keeping the cathode material constant. We used four different materials:
Indium, Titanium, Chromium and Gold with work-functions between 4.1 eV and 5.1
eV. The low work-function materials Indium and Titanium achieved the best
performance with energy resolutions: 2.0 keV (at 59 keV) and 1.9 keV (at 122
keV) for Titanium; 2.1 keV (at 59 keV) and 2.9 keV (at 122 keV) for Indium.
These detectors are very competitive compared with the more expensive ones
based on HPB material if one takes the large pixel pitch of 2.46 mm into
account. We present a detailed comparison of our detector response with 3-D
simulations, from which we determined the mobility-lifetime-products for
electrons and holes. Finally, we evaluated the temperature dependency of the
detector performance and mobility-lifetime-products, which is important for
many applications. With decreasing temperature down to -30C the breakdown
voltage increases and the electron mobility-lifetime-product decreases by about
30% over a range from 20C to -30C. This causes the energy resolution to
deteriorate, but the concomitantly increasing breakdown voltage makes it
possible to increase the applied bias voltage and restore the full performance.Comment: Accepted for publication in Astroparticle Physics, 25 pages, 13
figure