H

Abstract

This study is concerned with the H∞ control problem for singular neutral system based on sampled-data. By input delay approach and a composite state-derivative control law, the singular system is turned into a singular neutral system with time-varying delay. Less conservative result is derived for the resultant system by incorporating the delay decomposition technique, Wirtinger-based integral inequality, and an augmented Lyapunov-Krasovskii functional. Sufficient conditions are derived to guarantee that the resulting system is regular, impulse-free, and asymptotically stable with prescribed H∞ performance. Then, the H∞ sampled-data controller is designed by means of linear matrix inequalities. Finally, two simulation results have shown that the proposed method is effective

    Similar works