research

Planetesimal Formation with Particle Feedback

Abstract

Proposed mechanisms for the formation of km-sized solid planetesimals face long-standing difficulties. Robust sticking mechanisms that would produce planetesimals by coagulation alone remain elusive. The gravitational collapse of smaller solids into planetesimals is opposed by stirring from turbulent gas. This proceeding describes recent works showing that "particle feedback," the back-reaction of drag forces on the gas in protoplanetary disks, promotes particle clumping as seeds for gravitational collapse. The idealized streaming instability demonstrates the basic ability of feedback to generate particle overdensities. More detailed numerical simulations show that the particle overdensities produced in turbulent flows trigger gravitational collapse to planetesimals. We discuss surprising aspects of this work, including the large (super-Ceres) mass of the collapsing bound cluster, and the finding that MHD turbulence aids gravitational collapse.Comment: 6 pages, to appear in ``Extreme Solar Systems'', D. Fischer, F. Rasio, S. Thorsett and A. Wolszczan (eds), ASP Conf. Ser., 200

    Similar works

    Full text

    thumbnail-image

    Available Versions