The aim of this work is the investigation of the statistical properties of
local electric fields in an ion-electron two component plasmas for coupled
conditions. The stochastic fields at a charged or at a neutral point in plasmas
involve both slow and fast fluctuation characteristics. The statistical study
of these local fields based on a direct time average is done for the first
time. For warm and dense plasma conditions, typically Ne≈1018cm−3, , well controlled molecular dynamics (MD)
simulations of neutral hydrogen, protons and electrons have been carried out.
Relying on these \textit{ab initio} MD calculations this work focuses on an
analysis of the concepts of statistically independent slow and fast local field
components, based on the consideration of a time averaged electric field. Large
differences are found between the results of these MD simulations and
corresponding standard results based on static screened fields. The effects
discussed are of importance for physical phenomena connected with stochastic
electric field fluctuations, e.g., for spectral line broadening in dense
plasmas.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let