An elliptic divisibility sequence is an integer recurrence sequence
associated to an elliptic curve over the rationals together with a rational
point on that curve. In this paper we present a higher-dimensional analogue
over arbitrary base fields. Suppose E is an elliptic curve over a field K, and
P_1, ..., P_n are points on E defined over K. To this information we associate
an n-dimensional array of values in K satisfying a nonlinear recurrence
relation. Arrays satisfying this relation are called elliptic nets. We
demonstrate an explicit bijection between the set of elliptic nets and the set
of elliptic curves with specified points. We also obtain
Laurentness/integrality results for elliptic nets.Comment: 34 pages; several minor errors/typos corrected in v