Dynamic Recofiguration Techniques for Wireless Sensor Networks

Abstract

The need to achieve extended service life by battery powered Wireless Sensor Networks (WSNs) requires new concepts and technqiues beyond the state-of-the-art low-power designs based on fixed hardware platforms or energy-efficient protocols. This thesis investigates reconfiguration techniques that enable sensor hardware to adapt its energy consumption to external dynamics, by means of Dynamic Voltage Scaling (DVS), Dynamic Modulation Scaling (DMS), and other related concepts. For sensor node-level reconfiguration, an integration of DVS and DMS techniques was proposed to minimize the total energy consumption. A dynamic time allocation algorithm was developed, demonstrating an average of 55% energy reduction. For network-level reconfiguration, a node activation technique was presented to reduce the cost of recharging energy-depleted sensor nodes. Network operation combined with node activation was modeled as a stochastic decision process, where the activation decisions directly affected the energy efficiency of the network. An experimental test bed based on the Imote2 sensor node platform was realized, which demonstrated energy reduction of up to 50%. Such energy saving can be effectively translated into prolonged service life of the sensor network

    Similar works