research

Finite element simulations of nanoindentation in beta metastable Ti alloys

Abstract

peer reviewedNanoindentation is a versatile tool to probe local plastic properties of materials. Finite element (FE) modelling is currently used to identify material data from nanoindentation tests [1-4]. The general ambition of this research is to extract the material parameters describing the response of a new Ti alloy, called Ti-555, in order to perform simulations on representative microscopic cells and guide the optimisation of this alloy. In this paper, the first steps of the identification of the macroscopic flow parameters of the β-phase are described. The nanoindentation tests using a pyramidal Berkovich diamond indenter are performed in the β-phase. The FEM results with different parameters of an isotropic and anisotropic elasto-plastic (EP) constitutive law are analyzed and the predicted shapes are compared to the final shape of the indented material. The FE results very much depend on physical model choices, and cannot rely on an automatic identification approach

    Similar works