Similarity search is an important problem in information retrieval. This
similarity is based on a distance. Symbolic representation of time series has
attracted many researchers recently, since it reduces the dimensionality of
these high dimensional data objects. We propose a new distance metric that is
applied to symbolic data objects and we test it on time series data bases in a
classification task. We compare it to other distances that are well known in
the literature for symbolic data objects. We also prove, mathematically, that
our distance is metric.Comment: Technical repor