Compiling polymorphic miRNA-target interactions: the Patrocles database.

Abstract

Using positional cloning, we have recently identified the mutation responsible for muscular phenotype of the Texel sheep. It is located in the 3’UTR of the GDF8 gene - a known developmental repressor of muscle growth - and creates an illegitimate target site for miRNA expressed in the same tissue. This causes miRNA-mediated translation inhibition of mutant GDF8 transcripts which leads to muscle hypertrophy. We followed up on this finding by searching for common polymorphisms and mutations that affect either (i) RNAi silencing machinery components, (ii) miRNA precursors or (iii) target sites. These might likewise alter miRNA-target interaction and could be responsible for substantial differences in gene expression level. They have been compiled in a public database (“Patrocles”: www.patrocles.org), where they are classified in (i) DNA sequence polymorphisms (DSP) affecting the silencing machinery, (ii) DSP affecting miRNA structure or expression and (iii) DSP affecting miRNA target sites. DSP from the last category were organized in four classes: destroying a target site conserved between mammals (DC), destroying a non-conserved target site (DNC), creating a non-conserved target site (CNC), or shifting a target site (S). To aid in the identification of the most relevant DSP (such as those were a target site is created in an antitarget gene), we have quantified the level of coexpression for all miRNA-gene pairs. Analysis of the numbers of Patrocles-DSP as well as their allelic frequency distribution indicates that a substantial proportion of them undergo purifying selection. The signature of selection was most pronounced for the DC class but was significant for the DNC and CNC class as well, suggesting that a significant proportion of non-conserved targets is truly functional. The Patrocles database allowed for the selection of DSP that are likely to affect gene function and possibly disease susceptibility. The effect of these DSP is being studied both in vitro and in vivo. In conclusion, Patrocles-DSP could be widespread and underlie an appreciable amount of phenotypic variation, including common disease susceptibility

    Similar works