Inspired by experiments on Bose-Einstein condensates in optical lattices, we
study the quantum evolution of dark soliton initial conditions in the context
of the Bose-Hubbard Hamiltonian. An extensive set of quantum measures is
utilized in our analysis, including von Neumann and generalized quantum
entropies, quantum depletion, and the pair correlation function. We find that
quantum effects cause the soliton to fill in. Moreover, soliton-soliton
collisions become inelastic, in strong contrast to the predictions of
mean-field theory. These features show that the lifetime and collision
properties of dark solitons in optical lattices provide clear signals of
quantum effects.Comment: 4 pages, 4 figures; version appearing in PRL, only minor changes from
v