We present an STZ-based analysis of numerical simulations by Haxton and Liu
(HL). The extensive HL data sharply test the basic assumptions of the STZ
theory, especially the central role played by the effective disorder
temperature as a dynamical state variable. We find that the theory survives
these tests, and that the HL data provide important and interesting constraints
on some of its specific ingredients. Our most surprising conclusion is that,
when driven at various constant shear rates in the low-temperature glassy
state, the HL system exhibits a classic glass transition, including
super-Arrhenius behavior, as a function of the effective temperature.Comment: 9 pages, 6 figure