Catalytic combustion of inflammable gases with metallic oxides,application in the detection of leak in gas turbines

Abstract

Ces travaux de thèse s'inscrivent dans la recherche de moyens de prévention des risques d'explosion et de pollution liés à l'exploitation d'installations industrielles telles que les turbines à gaz. Ces travaux, en collaboration avec la firme General Electric, portent ainsi sur l'élaboration et l'étude de systèmes catalytiques pouvant entrer dans la fabrication ultérieure d'un capteur de gaz. Son principe de fonctionnement est basé sur la combustion catalytique du gaz à détecter. Les combustibles ayant fait l'objet d'une étude correspondent à ceux rencontrés dans une installation de turbines à gaz, à savoir le méthane, le n-butane (GPL), l'isooctane (essence), le n-décane (fioul), le monoxyde de carbone, l'éthanol et l'octanoate de méthyle (biodiesel). Dans ce type d'installation, le seuil minimal de détection du capteur est fixé à 5% de la LIE (Limite Inférieure d'Explosivité) du combustible. Il a donc été nécessaire de tester l'activité des catalyseurs en introduisant les combustibles en faible concentration (500 6250 ppm). Notre choix de catalyseur s'est porté sur les oxydes simples et mixtes à base de manganèse, de fer et de cobalt. Les pérovskites non-substituées LaBO3 (B = Mn, Fe, Co) et celles substituées de types La0,8A 0,2BO3 (A = Ba ou Sr et B = Mn ou Co) et LaB0,8B 0,2O3 (B = Mn ou Co et B = Fe ou Cu) ont été préparées par une méthode sol-gel. Les oxydes simples et les pérovskites non-substituées ont été imprégnés sur la silice mésoporeuse SBA-15 et la cérine en suivant la méthode dite des deux-solvants . Une étude approfondie par différentes techniques de caractérisation (DRX, RTP, DTP-O2, spectroscopie Mössbauer, RPE, RMN, XPS, etc.) a permis de mettre en évidence de nombreuses relations entre la structure des catalyseurs et leur activité catalytique.To avoid risks of explosion and pollution in industrial combustion installation, such as gas turbines, the detection of residual explosive gases is required. Therefore, in collaboration with General Electric, the work of this thesis was focused on the development and the study of catalytic systems which can be integrated in a future fabrication of a gas sensor. The principle of these sensors is based on the measurement of the gas concentration as a function of the increase in temperature produced by the heat of combustion reaction on the catalytic surface. The combustion of different hydrocarbons (methane, n-butane, isooctane, n-decane) and oxygenated compounds (carbon monoxide, ethanol, methyl octanoate) that are commonly used in gas turbine units was studied. In this type of installation, recent regulations have implemented a sensor response to detect a concentration as low as 5% of the LEL (Lower Explosive Limit) for the above studied fuels. To fulfill this demanding application constraint, the fuels must be introduced at very low concentration (500 6250 ppm) during the catalytic tests. Simple and mixed metal oxides based on manganese, iron and cobalt were chosen as catalysts. Perovskites LaBO3 (B = Mn, Fe, Co) and substituted perovskites La0,8A 0,2BO3 (A = Ba or Sr and B = Mn or Co) and LaB0,8B 0,2O3 (B = Mn or Co and B = Fe or Cu) were prepared using a sol-gel process. Simple oxides and perovskites LaBO3 were supported on a mesoporous silica SBA-15 and on ceria according to the two-solvents method. A complete set of physico-chemical characterisations of the different catalysts was realized using several techniques (XRD, TPR, TPD-O2, EPR, NMR, XPS spectroscopy, etc.) to correlate the structure of the materials with their catalytic activities

    Similar works