We consider the quasinormal spectrum of a charged scalar field in the
(charged) Reissner-Nordstrom spacetime, which has two horizons. The spectrum is
characterized by two distinct families of asymptotic resonances. We suggest and
demonstrate the according to Bohr's correspondence principle and in agreement
with the Bekenstein-Mukhanov quantization scheme, one of these resonances
corresponds to a fundamental change of Delta A=4hbar ln2 in the surface area of
the black-hole outer horizon. The second asymptotic resonance is associated
with a fundamental change of Delta Atot=4hbar ln3 in the total area of the
black hole (in the sum of the surface areas of the inner and outer horizons),
in accordance with a suggestion of Makela and Repo.Comment: 6 page