Using real-time charge sensing and gate pulsing techniques we measure the
ratio of the rates for tunneling into the excited and ground spin states of a
single-electron AlGaAs/GaAs quantum dot in a parallel magnetic field. We find
that the ratio decreases with increasing magnetic field until tunneling into
the excited spin state is completely suppressed. However, we find that by
adjusting the voltages on the surface gates to change the orbital configuration
of the dot we can restore tunneling into the excited spin state and that the
ratio reaches a maximum when the dot is symmetric.Comment: 4 pages, 3 figure