research

Characterizing Heavy-Tailed Distributions Induced by Retransmissions

Abstract

Consider a generic data unit of random size L that needs to be transmitted over a channel of unit capacity. The channel availability dynamics is modeled as an i.i.d. sequence {A, A_i},i>0 that is independent of L. During each period of time that the channel becomes available, say A_i, we attempt to transmit the data unit. If L<A_i, the transmission was considered successful; otherwise, we wait for the next available period and attempt to retransmit the data from the beginning. We investigate the asymptotic properties of the number of retransmissions N and the total transmission time T until the data is successfully transmitted. In the context of studying the completion times in systems with failures where jobs restart from the beginning, it was shown that this model results in power law and, in general, heavy-tailed delays. The main objective of this paper is to uncover the detailed structure of this class of heavy-tailed distributions induced by retransmissions. More precisely, we study how the functional dependence between P[L>x] and P[A>x] impacts the distributions of N and T. In particular, we discover several functional criticality points that separate classes of different functional behavior of the distribution of N. We also discuss the engineering implications of our results on communication networks since retransmission strategy is a fundamental component of the existing network protocols on all communication layers, from the physical to the application one.Comment: 39 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions