We conduct molecular dynamics simulations of the collision of atomic clusters
with a weakly-attractive surface. We focus on an intermediate regime, between
soft-landing and fragmentation, where the cluster undergoes deformation on
impact but remains largely intact, and will either adhere to the surface (and
possibly slide), or be reflected. We find that the outcome of the collision is
determined by the Weber number, We i.e. the ratio of the kinetic energy to the
adhesion energy, with a transition between adhesion and reflection occurring as
We passes through unity. We also identify two distinct collision regimes: in
one regime the collision is largely elastic and deformation of the cluster is
relatively small but in the second regime the deformation is large and the
adhesion energy starts to depend on the kinetic energy. If the transition
between these two regimes occurs at a similar kinetic energy to that of the
transition between reflection and adhesion, then we find that the probability
of adhesion for a cluster can be bimodal. In addition we investigate the
effects of the angle of incidence on adhesion and reflection. Finally we
compare our findings both with recent experimental results and with macroscopic
theories of particle collisions.Comment: 18 pages, 13 figure