Matched filtering is used to search for gravitational waves emitted by
inspiralling compact binaries in data from ground-based interferometers. One of
the key aspects of the detection process is the deployment of a set of
templates, also called a template bank, to cover the astrophysically
interesting region of the parameter space. In a companion paper, we described
the template-bank algorithm used in the analysis of LIGO data to search for
signals from non-spinning binaries made of neutron star and/or stellar-mass
black holes; this template bank is based upon physical template families. In
this paper, we describe the phenomenological template bank that was used to
search for gravitational waves from non-spinning black hole binaries (from
stellar mass formation) in the second, third and fourth LIGO science runs. We
briefly explain the design of the bank, whose templates are based on a
phenomenological detection template family. We show that this template bank
gives matches greater than 95% with the physical template families that are
expected to be captured by the phenomenological templates.Comment: 10 pages, 9 figure