research

C* - algebre i njihove reprezentacije

Abstract

Banachove algebre s involucijom koje zadovoljavaju aa=a2\| a ^\ast a \| = \|a\|^2 za svaki njihov element α\alpha nazivaju se CC^\ast-algebrama. U ovom su radu pokazana osnovni rezultati teorije CC^\ast-algebri, a razradi problema pristupljeno je najprije predstavljajući neke od rezultata teorije Banachovih algebri. Nakon što je pokazano postojanje Gelfandove transformacije na komutativnim Banachovim algebrama, taj se rezultat proširuje na komutativne CC^\ast-algebre gdje je navedeno preslikavanje izometrički \ast-izomorfizam. Osim toga, pokazana je uska veza zatvorenih lijevih ideala i hereditarnih CC^\ast-podalgebri koje se, dodatno, u slučaju separabilnosti početnog prostora, usko povezuju s pozitivnim elementima originalne CC^\ast-algebre. Konačno, u poznatom teoremu Gelfanda i Naimarka pokazano je postojanje vjerne reprezentacije svake CC^\ast-algebre.A Banach algebra supplied with an involution and a norm satisfying the condition aa=a2\| a ^\ast a \| = \|a\|^2, for every element α\alpha, is called a CC^\ast-algebra. The approach used in this thesis was to first introduce the main ideas and theorems of the theory of Banach algebras and then to move on to the theory CC^\ast-algebra and presented its important results. After proving the existence of Gelfand transformation of abelian Banach algebras, this result has been generalized to abelian CC^\ast-algebras, where the said mapping has been proved to be an isometric \ast-isomophism. Additionally, we have shown a close relationship between closed left ideals and hereditary CC^\ast-subalgebras, and the latter are, in the case of separability of the original space, closely related to positive elements of the observed CC^\ast-algebra. Finally, we have presented a famous resut of Gelfand and Naimark stating the existence of a faithful representation of an arbitrary CC^\ast-algebra

    Similar works