University of Zagreb. Faculty of Science. Department of Mathematics.
Abstract
Banachove algebre s involucijom koje zadovoljavaju ∥a∗a∥=∥a∥2 za svaki njihov element α nazivaju se C∗-algebrama. U ovom su radu pokazana osnovni rezultati teorije C∗-algebri, a razradi problema pristupljeno je najprije predstavljajući neke od rezultata teorije Banachovih algebri. Nakon što je pokazano postojanje Gelfandove transformacije na komutativnim Banachovim algebrama, taj se rezultat proširuje na komutativne C∗-algebre gdje je navedeno preslikavanje izometrički ∗-izomorfizam. Osim toga, pokazana je uska veza zatvorenih lijevih ideala i hereditarnih C∗-podalgebri koje se, dodatno, u slučaju separabilnosti početnog prostora, usko povezuju s pozitivnim elementima originalne C∗-algebre. Konačno, u poznatom teoremu Gelfanda i Naimarka pokazano je postojanje vjerne reprezentacije svake C∗-algebre.A Banach algebra supplied with an involution and a norm satisfying the condition ∥a∗a∥=∥a∥2, for every element α, is called a C∗-algebra. The approach used in this thesis was to first introduce the main ideas and theorems of the theory of Banach algebras and then to move on to the theory C∗-algebra and presented its important results. After proving the existence of Gelfand transformation of abelian Banach algebras, this result has been generalized to abelian C∗-algebras, where the said mapping has been proved to be an isometric ∗-isomophism. Additionally, we have shown a close relationship between closed left ideals and hereditary C∗-subalgebras, and the latter are, in the case of separability of the original space, closely related to positive elements of the observed C∗-algebra. Finally, we have presented a famous resut of Gelfand and Naimark stating the existence of a faithful representation of an arbitrary C∗-algebra