research

Algebraic Distributed Differential Space-Time Codes with Low Decoding Complexity

Abstract

The differential encoding/decoding setup introduced by Kiran et al, Oggier-Hassibi and Jing-Jafarkhani for wireless relay networks that use codebooks consisting of unitary matrices is extended to allow codebooks consisting of scaled unitary matrices. For such codebooks to be usable in the Jing-Hassibi protocol for cooperative diversity, the conditions involving the relay matrices and the codebook that need to be satisfied are identified. Using the algebraic framework of extended Clifford algebras, a new class of Distributed Differential Space-Time Codes satisfying these conditions for power of two number of relays and also achieving full cooperative diversity with a low complexity sub-optimal receiver is proposed. Simulation results indicate that the proposed codes outperform both the cyclic codes as well as the circulant codes. Furthermore, these codes can also be applied as Differential Space-Time codes for non-coherent communication in classical point to point multiple antenna systems.Comment: To appear in IEEE Transactions on Wireless Communications. 10 pages, 5 figure

    Similar works