thesis

Chemical evolution of neutron capture elements in our Galaxy and in the dwarf spheroidal galaxies of the Local Group

Abstract

By adopting a chemical evolution model for the Milky Way already reproducing the evolution of several chemical elements, we compare our theoretical results with accurate and new stellar data of neutron capture elements and we are able to impose strong constraints on the nucleosynthesis of the studied elements. We can suggest the stellar sites of production for each element. In particular, the r-process component of each element (if any) is produced in the mass range from 10 to 30 Msun, whereas the s-process component arises from stars in the range from 1 to 3 Msun. Using the same chemical evolution model, extended to different galactocentric distances, we obtain results on the radial gradients of the Milky Way. We compare the results of the model not only for the neutron capture elements but also for alpha-elements and iron peak elements with new data of Cepheids stars. We give a possible explanation to the considerable scatter of neutron capture elements observed in low metallicity stars in the solar vicinity, compared to the small star to star scatter observed for the alpha-elements. In fact, we have developed a stochastic chemical evolution model, in which the main assumption is a random formation of new stars, subject to the condition that the cumulative mass distribution follows a given initial mass function. With our model we are able to reproduce the different features of neutron capture elements and alpha-elements. Finally, we test the prescriptions for neutron capture elements also for the dwarf spheroidal galaxies of the Local Group. We predict that the chemical evolution of these elements in dwarf spheroidal galaxies is different from the evolution in the solar vicinity and indicates that dwarf spheroidal galaxies (we see nowadays) cannot be the building blocks of our Galaxy.Comment: 182 pages, 74 figures, PhD Thesis. Supervisor: Francesca Matteucci. High quality figures upon reques

    Similar works