For the undamped Kepler potential the lack of precession has historically
been understood in terms of the Runge-Lenz symmetry. For the damped Kepler
problem this result may be understood in terms of the generalization of Poisson
structure to damped systems suggested recently by Tarasov[1]. In this
generalized algebraic structure the orbit-averaged Runge-Lenz vector remains a
constant in the linearly damped Kepler problem to leading order in the damping
coeComment: 16 pages. 1 figure, Rewrite for resubmissio