research

Models of crustal heating in accreting neutron stars

Abstract

Heating associated with non-equilibrium nuclear reactions in accreting neutron-star crusts is reconsidered, taking into account suppression of neutrino losses demonstrated recently by Gupta et al. Two initial compositions of the nuclear burning ashes, A=56 and A=106, are considered. Dependence of the integrated crustal heating on uncertainties plaguing pycnonuclear reaction models is studied. One-component plasma approximation is used, with compressible liquid-drop model of Mackie and Baym to describe nuclei. Evolution of a crust shell is followed from 10^8 g/cm^3 to 10^(13.6) g/cm^3 The integrated heating in the outer crust agrees nicely with results of self-considtent multicomponent plasma simulations of Gupta et al.; their results fall between our curves obtained for A=56 and A=106. Total crustal heat per one accreted nucleon ranges between 1.5 MeV to 1.9 MeV for A=106 and A=56, respectively. The value of total crustal heat per nucleon depends weakly on the presence of pycnonuclear reactions at densities 10^(12)-10^(13) g/cm^3. Remarkable insensitivity of the total crustal heat on the details of the distribution of nuclear processes in accreted crust is explained.Comment: 8 pages, 5 figures, Submitted to A&

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019