research

An Efficient Dual and Triple Frequency Preprocessing Method for GALILEO and GPS Signals

Abstract

Data preprocessing is a mandatory stage for most of GNSS applications. In the frame of space weather and precise point positioning applications, the Geomatics Unit of the University of Liège has purchased two Septentrio PolaRx3eG receivers which allow tracking GPS L1/L5 and Galileo E1/E5a signals. In order to fully exploit these new data, we developed a preprocessing method extending existing techniques. Our preprocessing method consists of three consecutive steps. The first step is devoted to the compensation of receiver clock slips affecting code pseudorange and carrier-phase measurements. The second step covers cycle slips detection and the third step assesses data quality in terms of noise essentially affecting code pseudorange measurements. This preprocessing method was initially developed for GPS L1/L5 and Galileo E1/E5a dual frequency data but finally enhanced to also preprocess triple frequency data from first operational Galileo satellites as soon as data are available. The developed method already showed promising results.Space Weather And Navigation Systems (SWANS

    Similar works

    Full text

    thumbnail-image