When considering a graphical Gaussian model NG Markov with
respect to a decomposable graph G, the parameter space of interest for the
precision parameter is the cone PG of positive definite matrices with fixed
zeros corresponding to the missing edges of G. The parameter space for the
scale parameter of NG is the cone QG, dual to PG, of
incomplete matrices with submatrices corresponding to the cliques of G being
positive definite. In this paper we construct on the cones QG and PG two
families of Wishart distributions, namely the Type I and Type II Wisharts. They
can be viewed as generalizations of the hyper Wishart and the inverse of the
hyper inverse Wishart as defined by Dawid and Lauritzen [Ann. Statist. 21
(1993) 1272--1317]. We show that the Type I and II Wisharts have properties
similar to those of the hyper and hyper inverse Wishart. Indeed, the inverse of
the Type II Wishart forms a conjugate family of priors for the covariance
parameter of the graphical Gaussian model and is strong directed hyper Markov
for every direction given to the graph by a perfect order of its cliques, while
the Type I Wishart is weak hyper Markov. Moreover, the inverse Type II Wishart
as a conjugate family presents the advantage of having a multidimensional shape
parameter, thus offering flexibility for the choice of a prior.Comment: Published at http://dx.doi.org/10.1214/009053606000001235 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org