We use a statistical thermodynamic approach to determine the composition of
clathrate hydrates which may form from a multiple compound gas whose
composition is similar to that of Titan's atmosphere. Assuming that noble gases
are initially present in this gas phase, we calculate the ratios of xenon,
krypton and argon to species trapped in clathrate hydrates. We find that these
ratios calculated for xenon and krypton are several orders of magnitude higher
than in the coexisting gas at temperature and pressure conditions close to
those of Titan's present atmosphere at ground level. Furthermore we show that,
by contrast, argon is poorly trapped in these ices. This trapping mechanism
implies that the gas-phase is progressively depleted in xenon and krypton when
the coexisting clathrate hydrates form whereas the initial abundance of argon
remains almost constant. Our results are thus compatible with the deficiency of
Titan's atmosphere in xenon and krypton measured by the {\it Huygens} probe
during its descent on January 14, 2005. However, in order to interpret the
subsolar abundance of primordial Ar also revealed by {\it Huygens}, other
processes that occurred either during the formation of Titan or during its
evolution must be also invoked.Comment: Astronomy & Astrophysics Letters, in pres